Klasa Kombinatoryczna

by Jerry Sky

2020-10-08



1. DEF: Klasa kombinatoryczna

A(A,)\mathcal{A}(A, |\cdot|)

  1. AA \neq \emptyset
  2. :AN+|\cdot|: A \to \mathbb{N}_+
  3. {aA:a=n}=An\{a \in A: |a| = n\} = A_n

an=An<a_n = |A_n| < \infty

2. OGF — ordinary generating function

A(z)=n0anznA(z) = \sum_{n\ge0} a_n z^n

[zn]A(z)=an[z^n]A(z) = a_n

3. Przykład łączenia dwóch klas

A=(A,A)\mathcal{A} = (A,|\cdot|_A)
B=(B,B)\mathcal{B} = (B,|\cdot|_B)

AB=A\cap B = \emptyset

A+B=(AB,)\mathcal{A} + \mathcal{B} = (A\cup B, |\cdot|)

={xAxAxBxB |\cdot| = \begin{cases} |x|_A & x \in A\\ |x|_B & x \in B \end{cases}

(A+B)(z)=xABzx=xAzxA+xBzxB=A(z)+B(z)(A+B)(z) = \sum_{x \in A\sum B} z^{|x|} = \sum_{x\in A} z^{|x|_A} + \sum_{x \in B} z^{|x|_B} = A(z) + B(z)


4. Przykłady klas

4.1. Przykład

A=({ϵ},)ϵ=0\mathcal{A} = (\{\epsilon\}, |\cdot|) \quad |\epsilon| = 0

A(z)=aAza=zϵ=z0=1A(z) = \sum_{a\in A} z^{|a|} = z^{|\epsilon|} = z^0 = 1


4.2. Przykład

A=({,,},={1,1,0}\mathcal{A} = (\{\circledcirc, \square, \triangle\}, |\cdot| = \{ \circledcirc \to 1, \square \to 1, \triangle \to 0 \}

A(z)=2z+1z0=2z+1A(z) = 2z + 1 \cdot z^0 = 2z + 1

N(N,)     i=i\mathcal{N}(\mathbb{N}, |\cdot|) ~~~~~ |i| = i

N(z)=z0+z1+=11z\mathcal{N}(z) = z^0 + z^1 + \cdots = \frac{1}{1-z}


4.3. Przykład

N=({0,1,2,3,},)i=i\mathcal{N} = (\{0,1,2,3,\dots\}, |\cdot|) \quad |i| = i

N(z)=iNzi=i0zi=11zN(z) = \sum_{i\in N} z^{|i|} = \sum_{i\ge0} z^i = \frac{1}{1-z}


4.4. Przykład

N+=({1,2,3,},)i=i\mathcal{N}^+ = (\{1,2,3,\dots\}, |\cdot|) \quad |i| = i

N+=z1z\mathcal{N}^+ = \frac{z}{1-z}


4.5. Przykład

N3=({3,4,5,6,},)\mathcal{N}_{\ge3} = (\{ 3,4,5,6,\dots \}, |\cdot|)

N3(z)=xN3zx=z3+z4+z5+=z3(1+z+)=z311z=z31z\mathcal{N}_{\ge3}(z) = \sum_{x\in N_{\ge3}} z^{|x|} = z^3 + z^4 + z^5 + \cdots = z^3(1+z+\cdots) = z^3 \cdot \frac{1}{1-z} = \frac{z^3}{1-z}


4.6. Przykład

P={ϵ,1,12,21,123,132,321,}\mathcal{P} = \{\epsilon, 1, 1–2, 2–1, 1–2–3, 1–3–2,3–2–1,\dots\}

Pn=n!|P_n| = n!

P(z)=n0n!znP(z) = \sum_{n\ge 0} n! z^n zbieżna tylko dla z=0z = 0


4.7. Przykład

NEven=({0,2,4,6,8,},)\mathcal{N}_{Even} = (\{0,2,4,6,8,\dots\}, |\cdot|)
NOdd=({1,3,5,7,},)\mathcal{N}_{Odd} = (\{1,3,5,7,\dots\}, |\cdot|)

NEven(z)=z0+z2+z4+=1+z2+z4+=11z2\mathcal{N}_{Even}(z) = z^0 + z^2 + z^4 + \cdots = 1 + z^2 + z^4 + \cdots = \frac{1}{1-z^2}

NOdd(z)==zNEven(z)=11z2z\mathcal{N}_{Odd}(z) = \cdots = z\cdot\mathcal{N}_{Even}(z) = \frac{1}{1-z^2} \cdot z

AA(z)     BB(z)\mathcal{A} \sim A(z) ~~~~~ \mathcal{B} \sim B(z)
A+BA(z)+B(z)\mathcal{A} + \mathcal{B} \sim A(z) + B(z)

NEven+NOddN\mathcal{N}_{Even} + \mathcal{N}_{Odd} \sim \mathcal{N}

NOdd(z)+NEven(z)=11z2+11z2=1+z1z2=11z=1+z+z2+z3+=N(z)\mathcal{N}_{Odd}(z) + \mathcal{N}_{Even}(z) = \frac{1}{1-z^2} + \frac{1}{1-z^2} = \frac{1+z}{1-z^2} = \frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots = \mathcal{N}(z)


4.8. Przykład

W=({ϵ,0,1,00,01,10,11,000,001,010,100,110,},)\mathcal{W} = (\{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 100, 110, \dots\}, |\cdot|)

w=|w| = długość ciągu

W(z)=n02nzn=n0(2z)n=112zW(z) = \sum_{n\ge0} 2^n z^n = \sum_{n\ge0} (2z)^n = \frac{1}{1 - 2z}

[z1000]W(z)=21000[z^{1000}]W(z) = 2^{1000}


5. Izomorfizm

Dwie klasy kombinatoryczne A\mathcal{A} oraz B\mathcal{B} o OGF A(z)A(z) oraz B(z)B(z) są izomorficzne wtedy i tylko wtedy gdy A(z)=B(z)A(z) = B(z). Wówczas piszemy AB \mathcal{A} \cong \mathcal{B}