Powtórka z Dyskretnej i Analizy

by Jerry Sky

2020-10-05



Iloczyn Cauchy’ego

(n0anxn)(n0bnxn)=n0(anb0+an1b1+an2b2++a0bn)xn==n0(k=0nakbnk)xn \left(\sum_{n\ge 0} a_n x_n\right)\left(\sum_{n\ge0} b_n x_n \right) = \sum_{n \ge 0} (a_nb_0 + a_{n-1}b_1 + a_{n-2}b_2 + \dotsb + a_0b_n)x^n=\\ = \sum_{n\ge0}\left(\sum_{k=0}^n a_k b_{n-k}\right)x^n


Liczebność w zbiorach (n+m)(n+m)–elementowych

Mając (1+x)n=k=0nxk(nk)(1+x)m=k=0nxk(mk) (1 + x)^n = \sum_{k=0}^n x^k \binom{n}{k}\\ (1 + x)^m = \sum_{k=0}^n x^k \binom{m}{k} możemy obliczyć (1+x)n(1+x)m=k=0n(j=0k(nj)(mkj))xk (1 + x)^n \cdot (1 + x)^m = \sum_{k=0}^n\left( \sum_{j=0}^k \binom{n}{j}\binom{m}{k-j} \right)x^k

Przez to, że (1+x)n+m=k=0n(n+mk)xk (1 + x)^{n+m} = \sum_{k=0}^n \binom{n+m}{k}x^k wówczas (n+mk)=j=0k(nj)(mkj) \binom{n+m}{k} = \sum_{j=0}^k \binom{n}{j}\binom{m}{k-j}


Funkcje dwóch zmiennych

f(x,y)=11y(1+x)=11yn0(xy1y)n=n0xnyn(1y)n+1 f(x,y) = \frac{1}{1-y(1+x)} = \frac{1}{1-y}\sum_{n\ge0}\left(\frac{xy}{1-y}\right)^n = \sum_{n\ge0}x^n\frac{y^n}{(1-y)^{n+1}}

f(x,y)=n0(y(1+x))n=n0yn(1+x)n=n0yn(k=0n(nk)xk)==n0k0(nk)xkyn f(x,y) = \sum_{n\ge0}(y(1+x))^n = \sum_{n\ge0} y^n (1+x)^n = \sum_{n\ge0}y^n\left( \sum_{k=0}^n \binom{n}{k} x^k \right) =\\ = \sum_{n\ge0}\sum_{k\ge0}\binom{n}{k} x^k y^n


Fakt#1

yk(1y)k+1=n0(nk)yn \frac{y^k}{(1-y)^{k+1}} = \sum_{n\ge0} \binom{n}{k} y^n


Fakt#2

yk(1y)k+1=nk(nk)yn=() \frac{\bold{y^k}}{(1-y)^{k+1}} = \sum_{n\ge k} \binom{n}{k} y^n = (*) podstawiamy n=k+an = k+a przy czym a0a \ge 0. ()=a0(k+ak)yk+a=yka0(k+ak)ya (*) = \sum_{a\ge 0} \binom{k+a}{k} y^{k+a} = \bold{y^k} \sum_{a \le 0} \binom{k+a}{k} y^a

Skracając yk\bold{y^k} po obu stronach otrzymujemy: a0(k+ak)ya=1(1y)k+1 \sum_{a\ge 0} \binom{k+a}{k}y^a = \frac{1}{(1-y)^{k+1}}