T(n)=3T(4n)+n=...
T(1)=Θ(1)
...=n+3(4n+3(42n+3T(4n)))= n+43n+(43)2n+33T(43n)=(∗)
chcemy 4xn czyli x=log2n
(∗)=nk=0∑logn(43)k=(∗∗)≤nk=0∑∞(43)k=4n czyli T(n)=O(n)
(∗∗)=n+(43)n+(43)2n+...+3log2n⋅T(1) wiemy, że T(1)=Θ(1)
oraz alogbn=blogbalogbn=b(logbn)⋅(logba)=nlogba =n+(43)n+(43)2n+...+nlog43⋅Θ(1)≤ przy czym nα dla α<1 ≤nk=0∑∞(43)k+Θ(n2)=O(n)